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e ABSTRACT., For today's high thrust rockets (necessary for

RSN W orbiting) the minimum expense of propellant is obtained by
the use of minimum characteristic velocity solutions. When

o impulses are allowed, optimal ascents are always impulsional

fos only, The '"two-impulse asce?ding trajectory' with an imme-
diate impulse and another impulse at the apogee of the final
orbit, is generally the optimal solution. We use the usual
notations (Chapter 1,2 and figure 1), subscripts 1 are re-
ferring to the fictitious laﬁnching orbit starting at the
practical limit of the atmosphere (about 50 km altitude) sub-
scripts 2 are referrtqgﬁtoggﬁg target orbit.

INTRODUCTION

The ascent into orbit is an essential phase of any space mission /3%

The problem of optimal ascent -into-orbit includes two-very different
parts:

1. Optimization of crossing the atmosphere.
2. Optimization of the non-atmospheric phase of the putting into orbit.

The first problem, by far the most difficult of the two, has been taken
under study by many writers (example: ref. [1]; it is clearly closely linked
with aerodynamics and from this fact theé minimum solutions vary a great deal de-
pending on the vehicles contemplated. Nevertheless, some general laws and some
limiting laws have been exhibited plainly.

The second problem, which is the one taken under study here, leads to
identical solutions for all high-thrust vehicles. The characteristic optimized
is, as always, the expenditure of propellant leading to minimum characteristic
velocity solutionms.

i

The study leads to two or three-impulse solutions, feasible in practice,
with low loss, by means of thrust trajectories of short duration.

‘ This problem has formed the subject of numerical studies [2] and also of
some analytical studies in special cases.

i In practice, of course, the twoipreblems should be optimized at the same
time: crossing of the atmosphere then extra-atmospheric flight path; this

*Numbers in the margin Tndicate pagination in the foreign text. "~
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leads generally to "atmospheric exit" velocities slightly inclined to the
horizontal. This is not, however, always the case, e.g., when only western
launching azimuths are availablézgeAlse, Touficof concern for the general aspect,
nothlng particular will be assumed on the '"atmospheric exit" veloc1ty, con-
1dered as the initial veloC1ty 1n the problem examined.

dl Descrlptnon of the Theoretnca] Problem.

e Upon exiting from the atmosphere;(either at least from its aerodynami-
- cally important layers or from an altitude of about 40 to 70 km for ordinary
mockets) a mov1ng body is propeilea by a determlned ve10c1ty Vl' mow can it be
caused to reach, with mlnlmumWexpendlture of propellant, a final elliptical
orbit with semimajor axis @, and eccentricity e, specified?

The orientation of the final orbit is considered to be open.

Of course, the fact that the earth rotates, as well as its atmosphere,
does not become a factor in this'part .of the ascent into orbit. We shall also

use only fixed axes (whose origin is th% earth's center of gravity).

-
Vi is therefore the absolute exit velocity from the atmosphere.

We shall assume that velocity Vl ls elllptlcal or parabollc. If, more-
over, it were hyperbolic, the first thing to be done,\ln an. optimum "ascent,
would be to restore it to-a parabolic value either using retrorockets; or - -
better, if it is possible, using an atmospherlc braklng in the mlnutes precedlng
“the "exit from the atmosphere. - .

On the other hand, the gravitational potential of the earth will be
assimilated to that of a uniform sphere with the same center and mass and we
shall also disregard the effect of external celestial bodies.

In the case of vehicles for which maximum thrust corresponds to the use
of’ max1mum>e3ect10n velocity (chemical rockets and rockets with non-variable
ejection velocity, etc...), the minimum expenditure for propellent still
corresponds to the use of minimum characteristic velocity solutions, since the
rocket is used according to the 'Mall or;nothlng" method, i.e., according to a
succe551on of maximum thrust trajectorlqs separated by balllstlc trajectories.

We shall therefore investigate the optimum ascents into orbit from the
p01nt of view of the minimum characteristic velocity. We shall first of all
assume that we can, if necessary, produ@e instantaneous 1mpulses, then we shall.

i prov1de an order of magnitude for the loss (generally slight) in the case where

the maximum thrust is limited. é
!

We shall leave aside the rockets for which the maximum thrust does not
correspond to the utilization of maximum ejection velocity (limited power nu-
clear electric rockets, etc...) for theée rockets generally provide a weak

thrust, unusable for an ascent into orbit.




The first orbit, a launchihgyorbit

eccentricity e,.

for the orbit depending on whether it is
a = semimajor axis;

e = eccentricity;

p = a (1--e?) = parameter

b=ag JT—¢ semiminor

v = true abnormaltiy;

© = mean movement;

=

= n? g3 = gravitational-

i
4
!

velocity vector
_lavi

o<y Ry
it

= nab

C = characterlstlc Veloc1ty

VGlOClty changes = _{lYldt+-2tAV[

‘Corresponding to velocity V , is defin-
ed by its semlmajor ax1s a1 and its eccentricity e;. Its apogee is ou€51de the
~ earth and 1ts fictitious perlgee is 1n51de.

Cower FPays

g The flnal orbit aimed for is defined by 1ts semimajor axis ag and its

‘.. . We shall utilize the customary symbols and reserve the non-indexed letters

= radius vector o

l- klnetlc energy

sum of all artifical

1
3
>:

"osculatory' or '"instantaneous'!.

cons taﬁt
(= 398,580 km3/sec? fon Earth).

-
designating the accelerations of thrust and AV the

impulses).

; P = distance from the perigee = a(l--¢);

¢ = angle of V and of the

esin ¢

(@®=—-~¥wo @<+%ﬁ

1-4+ecose’

A = distance from the apogee = a(l +72);

local horizontal plane

®,= initial value of ¢ = angle of "atmospheric exit".




R = radius of the atmosphere
w ) c«‘%@ ae
L = V% =
iwv § exit"
L . K= = velocity of
: level of "atmospheric
- (from Kreis = circle,
' L
- -
-_>. 3
T = velocity vector of gr

(T is owing to the planet!s rotation,
cosine of the local 1

1.3 Results.

(= 6, 370 km + 40 to 70 km in the case of Earth).
escape velocity at the level of "atmosphefic
z

(= 11.98%m/5ee ifi 'thie case of the Earth).

7.87/km/sec in the case of Earth).

Tiils
H

i
H

circular satellization at the

exit'",
in German)

ound surface at launching point

T = 465 m/s x
atitude in the case of the Earth).

(The proofs are set.forth in Chapfervi.7);

In the impulse cases, the optimum :

A.

I.

This case is only found when A

A first impulse,
an intermediate ellipse with perigee P,

braklng, at P, makes transition to final

The characteristic velocity of thi

Case where atmospheric brakiné

The Hohmann Transfer (Fig. 2).

tangential and ac

ascents are of seven different types:

s are not used.

1= Ag.
celerative, at A;, makes transition to
; a second impulse, tangential and

orbit.

s transfer is;

i an\/ A1+P2/_\/(l-

1

II. The Ascent "Through Infinity"

A first immediate tangential i
of Vito L (parabolic velocity); at a gre
allows redescent on the parabola or elom

" tangential braking makes the transition-

(1 —e)

\/u T4 e,

(Fig. 3).

mpulse carries the value of the velocity
at distance, at A, a negligible impulse
gated elllpse AP, ; finally, at P, , a
to the final orblt




Launching

Atmosphere
®
F
Fig.1.0A =0P =¢
OB = b; FP = P; FA = A; FM = 7: 4

Tr =
14+ e cos ¢

Fig. 2. Hohmann transfer.
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The characteristic velocity of this
ascent is:

Co=L—V,+ \/2” \/M+xi‘ez) |

Practlcal viewpoint: ?

T

‘It is clearly not possible to re-
"move A to infinity; with fixed time
of transfer or with fixed A distance
the optimum is produced for all
practical purposes when the two in-
termediate ellipses are coplanar
R and have A as apogee. The loss with
i respect to the optimum is then (for
' A maJor) !

—?—%[\/%—1——24305@1]

%Fig. 3. Ascent "Through Infinity"
(6C is positive only if P, > R (1 + 2 cos 9 )2 show1ng a first optlmum condltlon
for ascents ''through 1nf1n1ty")

RX—-931nﬁ therefore -§C-is on the-

~Por-A-=-60-R-(distance from-the moon)
order of several tens of m/s.

Comment: it is possible to changé the plane of final orbit for only a
slightly higher cost by using at A an impulse not located in the initial plane.

III. The "Two-Impulse Ascent" (Fig. 4). /6
This case is only net if A <§A2.

The flrst impulse is an 1mmed1ate 1mpulse It transforms the ve1001ty

%i = 0G into V = OJ, point j'belng determlned in the following manner:

1. The ellipse with center 0 w1th major horizontal axis MM (with
7 /o _ T
QM = [ 2+-RJ’ with minor vertical axis NN' (with ON = y/ )

is the hodograph of velocities at 0 leadlng to an apogee at the distance from
~A,. The foci of this ellipse are F; and F,.

( (OF ~ OF, = \/'—QXS’E—R’)

!



2. Let F, be the focus far-
thest removed from G. Point J
A wis 1s on the above hodographic
ellipse and on the straight line
2G (G being between Fzﬁand J).

The velocity V OJ leads |
into an apogee A, where a second
impulse (tangential and accele-
rating) makes transition to the
final orbit. :

The characteristic velocity of
the "two-impulse ascent" is:

Fig. 4. The "Two-Impulse'' Ascent. Cy = '’ i:éﬁfl \// — [F,G|.

H

; B. 1In the case where atmospherlc brakings can be utilized at llttle
cost, four new types of optimum solutlons appear.

IV. The "Ascent Through the Atmosphere” (Fig. 5).

This case is only met if A; > A, At A, a tangential and accelerat-
ing impulse makes tramsition to the gra21ng orbit A;P. At P an atmospheric
braking leads to-orbit PA,.-Finally, at A, a last tangentlal and- acceleratlng
impulse makes transition to the final orbit.

The characterlstlc ve1001ty of this solution is:

G = \/ a \/—_M
* \/&“’1“:‘2" \/Az AT

- . . V. The Ascent "Through In-
; . finity, Then the Atmosphere"
- (Fig. 6).

It is enough to say that
this solution starts as an ascent
"through infinity" and ends as
an ascent '"through the atmosphere",
with therefore and immediate
tangential impulse with cost
(L-Vi), a very weak impulse at A,
an atmospheric braking at P and
a tangentlal and accelerating
impulse at A,

Fig. 5. Ascent "Through the Atmosphere't.



“The characteristic velocity‘ef
this solution is:

| 'scw'm — I_, — V1 4 \/ (1 — e,) \/mf

The loss owing to no movement
apart from point A to infinity
is:

| RL
=il

1 — 2005(1)1)"
for A major (it is therefore
necessary for ¢, to be greater

than 60° for this transfer to be
optimum.)

VI and VIII. /7

" In order to be entirely complete
it is advisable to mention two
very unaccustomed cases of
optimum utilization of atmospherlc
braking. In these cases, it is

FF}g. 6. Ascent "Through Infinity and
‘then the Atmosphere''.

begunfbyﬂreducing~tofzerowthe velocity with respeetﬁte the atmosphere-using -

> > .

atmospherlc braking. In other words, V, is replaced by T ., then there being ,
used either a "two-impulse ascent" (flrst case) or a “transfer through 1nf1n1ty"
(second case). ;

Such solutions are always optimum if V; < T (exceptional case). They can
only be optimum if: V, < L - K+ T; and if V; cos ®; < T (very rare case re-
quiring a western launch azimuth and a low horizontal velocity of '"atmospheric
ex1t") E

Comment: Of course in cases II, III, and V there are grounds for
optimizing the altitude of the 1mmed1ate impulse as a function of the atmo-
spheric resistance to different velocities and different altltudes.

1.4 Discussion.

In a given case the various possible solutions must obviously be compared.
1.4.1 Case where Atmospheric Braking cennot be used.

Comparison should be made of the escent "through infinity'" and the

"finite ascent" (i.e., the Hohmann transfer if A; = A, and the '"two-impulse
ascent" if Ay < A,).



Here are some simple rules:

Let us state:

o

3 t max (A;; A,)

if: * O OBASAip=p=a (16l é

V2 o q,; ‘the optimum ascent is the

O if: Py R[4+ 200501 if: LogZ <
§1f. g i or else if: éLﬁg2Rﬁ

Mfinite ascent",

] the optimum ascent is 'through infinity".

1.4.2 Case where Atmospheric Braking can be used.
(We shall disregard the last.two solutions VI and VII).

10 P2< 4R (1 +KR"):Cma£m< Cm etCatm<CK.

It is necessary therefore to compare the "ascent « atm" w1th the "ascent
atm"., (If Al = A,) or with the "two- 1mpulse ascent'" (if Ay, < A,)). Remember
that for &; < 60° the "ascent ~ atm" is never optlmum

2°P2>4R(1+ )- C:ostm>c
2

In the case A; < A,, it is therefore necessary to compare the "ascent
through infinity'" and the "two-impulse ascent" (cf. paragraph 1.4.1).

In the case A, = A, there are three ascent methods in competition: the
ascent '"through 1nf1n1ty”, the Hohmann transfer (whence utilization of the

rules of paragraph 1.4.1,) and the "ascent through the atmosphere'" (this 1atter
is never optimum if:

1.4.3 Comments

I. From a practical viewpoint, the optimum ascent is very often a '"'two-
impulse ascent.' It is indeed enough that the four broad conditions following
be satisfied:

g Ay 29 @, 600;
,&; R[1 + 2 cos @,




Lo II The "twonlmpulse ascent" leads to an injection at the apogee of the |
orbit and not at the perigee as is freqqently done for the sake of technical
convenience. Fortunately, the dafierenge,ls~genera11y small: the loss (in
fcharacterlstlc velocity), clearly zero 1f e, = 0, never exceeds: :

% : !
W N § K (Az — R)? 3
- 5 4 (A, +Rp ‘

A"or 15 m/s for A, =R + 650 km. |

IT1I. If the different methods of dptimum ascent into orbit are plotted on.

a dlagram, the following flight paths a%e obtained (Fig. 7).
L IV. We shall now study C, , /8
characteristic velocity, of lVi|‘

: putting into orbit as a function
1’4 J b/ of the vector V.
p ‘ /// uv #[Vy] fixed, C becomes lower
b — , o SR
_uu.__q? ’ proportionally as ¢, droza.
Therefore, at velocity |V!| with
A, 1 1

] ‘ respect to the ground given, the
At b pi'g % optimum consists in a horizontal -
_] exit directed towards the east.
| This is approximately the solu-
- tion used for customary satel-
lite launchings.

The advantage of one 1aunch 51te
with respect to another (at equal
altitudes) is therefore measured .
under these conditions by the
difference of local velocities T
of the ground (at the maximum
465 m/s between an equatorial
site and a polar site). We shall
see in the second part that
equatorial sites are benefited
much more if the orientation of
the final orbit is no. longer open.

Vo

N
e
NO e

Fig. 7. Apogee-Perigee Diagram.

I, Hohmann transfer.

11. Ascent '"through infinity'.

111. "Two-impulse' ascent.

IV. Ascent "through the atmosphere.!'

V. Ascent "through infinity, then the
atmosphere'!, f

Comment: If a site only has
available western launch azimuths
(for example, the Landes' base),
it may be, at exit velocity
|V' | w1th respect to the ground

given, that the optimum is made up by an obllque or even vertical exit. These
cases are plainly very unfavorable ones.

10



| 1.5 The Reverse Problem: Economical Descent from an Orbit. |
We shall only consider the;case: Where satmospheric braking can be used %
_at little cost. In this case, it is required to reach at the least p0551b1e !
.cost an onblt whose perigee is 1n the atmosphere Two types of optimum
solutlonSeare easily obtained: R S5 ' i

1) Case where P, %,&R (1'+

gjz A tangential braking at A, (Fig. 8), with cost: Cp-m V/A (1—e) — V/Ag

++ .making transition to orbit A,R.

- By adJustlng atmospheric brak—
ing it is possible to land any-
.wwhere at all using the orbit A oy

' S R\ !
2) Case where’lﬁ > 4R(1—F;;)‘

A tangential acceleration at P,
(Flg 9), with cost:

s .
Cow = P;‘ \/Piz(1+ez),

leads to the very elongate
ellipse P,A. At A a negligible
braking allows making transition,
to orbit AR. i

The loss owing to not moving
apart from point A at infinity
is (for A major):

o L ‘-_-__ .
8C = 5% (VP R — 2R)
~Fig. 8 Optimum Descent. First Case. Comment: It is possible, for .
- ‘ a hardly higher cost, to change '
plane at A and, hence, to land
: ? at any place whatsoever
Example descent from a synchronous satelllte orbit (A, = P, = 6.6 R)
It follows that:

. Cp = 1500 m/s > Cpw = 1270 m/s.

Wfll




i

E responds to the case A, = P, = (2 » V2)
%mﬁRoﬁ‘lt follows that:

!

p = Coa = 1.490 m/s. ?

1 Bys the way of comparlson the most
troublesome of the optimum ascents into
orbit {(with an "exit angle" &; zero) is

obtained for A, = P, = 11.938'R. It re-

quires, from the ground: G = 12.13
km/sec: if the launch base”is polar.

!

= 12. 13 km/sec -0.465 km/sec =
11 67 ﬁm/s if the launch base is
equatorial,

1.6 Losses Owing to Limitation of Thrus

.1, Case of Non-Immediate Impulses.
§ If a non-immediate thrust is re-
placed by a thrust trajectory (optimally
%rranged) with duration ¢ (from ¢ to
j aC
t + t), the relat1ve loss < for

i

. _Fig. 9. Optimum Descent. Second
7 Case.

buls 1mpulse 'i$ such—that:
i lu—rf to+ ¢ 2
3C 252 C f wry (u) du — U uy (v clu]

(‘—C—\ To * C2 fo
designating the duration of rotation on a circular orbit at the altitude of
tﬁe impulse and vy (u) the value of acceleratlon at instant u,

- - (therefore ' ’G=ﬁfWhqu }

Ju
1 LI

. >2 N
If +y(u) varies only a little: é:\<\%t—

wtdl

(In the case of the Earth .5_2 <A“rﬂ if t = 2 min.)
B s

h-J
v-,..

.2, Case of Immediate Impulses § L

The loss is then higher. It is on the order of ¢ instead of t2.

- A. Case of "Ascents through Infinity"

" (L — V) sin_:I)—1 8

ac
G 2L - Y .

~(for y major), with: g = acceleration of gravity (=9.8 m/s?).

B. Case of the "Two-Impulse Ascent"

+
- Let Cg be the cost of the theoretical immediate impulse (GJ on Fig. 10)
Tvand ¢ the angle of this 1mpulse w1th the horlzontal plane, 1t follows that

FprT—

The most troublesome descent cor-—i

L.



%C_3C

C,, sin®'p

g (A—R) (A +2R)

€ Co 2[V1sm <I>1-|— Cosmcp] y

the relatiye loss is generally much 1e§,
ascantg “through\lnflnlty " Page

:Flg

;w].7.1

vv 1 and

10

Examination of the Problem

; Since only the shape of the orbits is taken into consideration, we can
‘ use a perigee-apogee diagram (Fig.

"Two- Impulse' Ascent.

11).

tlons)
EA A
| 1| I ;
R

. /
5 ol

Fig. 11 Perigee~Apogee Diagram. Zone
'lt W

;nwthgs case than in the case of

Immediate
- ‘
_theoretical impulse GgJ; CO iGJ_

P

NEEG NS N A

Az (A + R)

Comment: if sin ®; =!0: sin¢

is no 1oﬁger of
£

"but of order as in

the case of non-immediate im-
pulses.

1.7 Proofs

We shall only perform a proof
in the case where atmospheric
brakings cannot be used and where
the rocket thrust is not limited.
{impulse case). ‘

3

i
§

" Zone I (P<R<A) corresponds to
secant orbits with the earth ;
(or at least with the atmosphere).

We shall therefore look for thé,g
optimum path between a point of
zone I and a point of zone II.

Since the orbits in zone I are:
interrupted by the atmosphere, -
the parameter v (true anomaly)
cannot be considered as an ab-
solutely free control parameter.
If, indeed, the optimum position;
of appllcatlon of the thrust has.
been exceeded, it is not p0551b1e
to return there. We shall assume,
however, that this can be done |
and we shall certainly see if the
result obtained is feasible.




It is then pbsSible to prove”sucﬁessivély:_

ft§.7;2 Theorem. |

1. Either, starting : -
(F1g 12); the rectilinear +'i
_transfer by an impulse at the &

,‘}Q%h‘JK is in this case less costly (Hohmann
ayee, therefore feasible).

‘ 2, Or, the path ends at M on the stréight line P = R; the flight path
JLM (Hohmann transfer feasible) is in this case less costly.

H

Theorem I is therefore quite exact,

1.7.3 Theorem 11~ ?/10

/A “ The rocket can only be utilized
’ the highest or lowest possible.
Let us now investigate the

range of maneuverability.

__Thé . parameters of state can be
a, H and C (semimajor axis, «
kinetic energy and characterlstlc
velocity) since only the shape
of the orbit becomes a factor.

i

The component of the thrust
normal to the orbiting plane only
N modifies the orientation., The
Fig. 12 Theorem I optimum thrusts are therefore in'
the plane of the launch orbit.

Vo

Let ¢ be the angle of thrust with the horizontal (we shall assume ¢
“positive upwards) and it follows that:

dH

SC =Tcose

da  2a?
—»Cm%[cosg+ecos(@—o)].

Pontryagin's optimum condltlon [4] is stated:
max1mum with respect to ¢ and v T M - da
; 'R‘Pﬂdc+ "dC:




| r g ' 2
k= [rpg tpealt + ¢ cos v)] cos g + 2 ;18

i

DPsSinosing

Mi”it therefore follows that: Coway

2 ale . >

: : sin ¢
10) tg @ = H Pa
2 a?
ree + Pa (1 -+ ecosy)

2

: - .3 . . .
20) X = [2;; epa sin 0]2 + [rpn -+ -2—13?— Pq {1+ ecos 9)] :

R S

‘maximum with respect to .

l[z = pir’ + 2 Q"*" 4pa{”bPE"Pa]

The last term is independent of v and the maximum of p ﬂ.+._ﬁlk ,
) oW
is produced either for r maximum (at the apogee) or for r minimum (r = R in
zone I and r = P in zome II),. . :

Sy
S

Theorem II is therefore qulte correct.
It may be noted, owing to the expression above of the optimum value of
~~~~~ ~tg ¢, if the thrust takes place at the perigee or apogee (sin v = 0), that tg:
¢ = 0 (horizontal thrust) is produced. ‘
1.7.4 Theorem 11

The switchings in zone I always take place in the direction r =R +> r =

e For a switching in zone 1, Z has the same.value for r = R and r = A
therefore' ¢

or ph(A + R) = p2 o2

; in which the limiting values of ¢ for r = R (switching values):

esin o -
IR —e
A+ R

}tg%:
A e eos e o

15




“% 1,7.5 Optimum Flight Paths

H
3

The simple geometric construc-
tion above (Fig. 13) with the
useful angle (cross-hatched) was
derived with:

T

! 2 :

| T 0 N\ (in reality, only the double
‘ b LM e } cross-hatched portion, under the
Fig. 13 Useful Angle at Level r = R, tangent, is actually used).

~A direction used as direction of thrust cannot enter into the useful angle, it

i»can only exit from it. Therefore, the communications in zone I can only take
~ -place in the direction r = R » r = A, The theorem III is therefore quite
 -correct. : : 5 S

1y free control parameter does not lead to an ﬁmpossibility.A

As in zone I, A cannot decrease (theorem I), OF; and OF, cannot increase.

i &
i W

N i i s T N R [P pp— § N ¥ o s v s A b e L e o E e
In this way it is incidentally confirmed that the hypothesis: V absolute-

Taking into account optimum flight paths in zone II (Hohmann transfers
~and transfers '"through infinity"), the optimum flight path between a point of
~zone I and a point of zone II can only have one of the three shapes below |

Fig. 14 Optimal Paths

16




- ;.Fig.

o Shape 3 corresponds to the "ascent through infinity" described in

fChapter 1.3 from the results (the first

A l.7€5.1 First of all let us opt
..in zone If Coway Fa

A first impulse at level r =

R takes the apogee to value A.

« impulse is a tangential 1mmed1ate
_ impulse carrying the velocity frem Vy-to:L:fparabolic velocity).

N
3

imize the part of the transfer iocated

A second

{himpulse (tangential at the apogee) takes the perigee to value R (Fig. 15).

The hodograph of the velocities
at 0 giving an apogee at distance
A is an elllpse with center 0 ;
(Fig. 16), major horizontal axis

i (o = \/RA+R)

... ninor vertical axis

<o

=3

NN' | (O\T—- \/2“

‘ !
R =
| N— gy
| Ok = Vaww)
|
| ;
| o The first impulse is therefore a
P R ;5 vector GJ J being a point of the
. 1 o ellipse MN M' N' and the cost of'
the portion of the transfer in |
: zone I is: ;
15 Optimization in Zone 1I. e :
- ~H%— R
o= 1811 + /b — X 1T
- But s is precisely the eccentricity of the ellipse MNM' N'; it followé
“that = ' ; -

Rizl o —1FJ1l
B3 =§,ifl0§1l |F H‘

The optimum position of J is therefore on the straight 11ne FoG (F2 belng

~the most removed focus of G) from the slde of G.

Ci=GJ +FJ — OM+ \/

It is accordingly true that:.

“i7



‘SF: and 2.

" There is recovered in this way a constructlon similar to the one shown

, (a construction satisfying the condltlons
_of useful angle and switching of. paragraph :.7.4).

éVln 1.3 for the "two-impulse ascent",

18

1.7.5.2 Comparison of paths 1)
tand 2) below (Fig. 17) always leads
to the removal of path 1).

Indeed:

1Cy = FiM — FiG > Gy = F

with

\/A %—R»

1.7.5.3 The optimum flight paths.

oF; = \/A1 A1+R)

“‘between a point of zone | and a

Fig. 16. Optimization in Zone 1.
RS > > -
0G = V;; 0J' = Vx.
ﬂ Al
s
A
s G
? , -
BR __o/Y
r 1 1
“Fig. 17. Comparison Between Paths 1. .

point of zone |l therefore have the
shape 2) or 3) (Fig. 14) and the
only question remaining for solution
is to determine the optimum ordinate
A of the intermediate segment

~18).
157.6 Theorem 1V,

The optimum value of A is elther
A maximum or A minimum, i.e.
either A infinity or A = max
(A1, A2).

The proof of this last theorem i§
quite complicated. We shall show
only the following elements:

If ¢, is the angle determining
the direction of the first impulse:

tg . T ,‘3531 sin V3

Pa =0 —

( 1o coseq + |/ Ll
_ _VEA-—RR—P) ) :

bt Vs




it follows that (Cp designating the to

“Fl1G.

“leads to two or three-impulse

: dC'__SIlFi__
,sgndA—-g B,

Vo

18 Final Optimization.

In the hypotheses under which we
impulses, incapability of using atmosph
~each case two competing solutions for ¢
~the ascent '"through infinity'" on one hand and the "Hohmann transfer" (if A,
A,), or else the "two-impulse ascent"

~is explained and discussed in Chapter 1.

:;”CONCLUSION

tal cost of the transfer):

let us state

I« _R
S=p

{A + Rj® i
(A + Py [A+ (ZA + R) cos guF =

The proof consists in verifying

S

4

< 0 and

‘that S<0 leads to

“therefore that S is not cancelle&
more than one and in this case in
a decreasing direction. The same

is therefore true of

:

andj‘

the minimal value of Cy is obtain-
ed for one of the extreme values
of A consistent with theorem IV,

operate here (capability of performing V
eric brakings), there is therefore in
omparison, always involving impulses:

if Aj<A,) on the other hand, just as 1t
3 and 1.4. |

The optimization of the extra- atmospherlc phase of the ascent into orblt

; (in the case where the final orbit is elliptical and with open orientation)

solutions which can be carried out practically
“with a slight loss by means of thrust trajectories of short duration.

The optimum solution is almost aiways of the "two-impulse ascent" tyPe

with one impulse starting from the "exit from the atmosphere" and the other

(1n3ect10n impulse) tangential to the apogee of the target oxrbit.

19



) "In Part Two we shall study the case in which the target orbit plane is
. determined and not open. The equatorial launch sites in question have many
_more advantages with respect to:the others than in the present case.

» In P%rt Three we shall study the case in which the final orbit is hyper-
5 bolic . " oy M = ~E \
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~OPTIMIZATION OF THE EXTBAFAINDSPH£R|C PART OF THE ASCENDING

TRAJECTORY TO AN ORBIT
PART TWO - CASE IN WHICH THt TARGET ORBIT IS ELLIPTIC AND
WELL DETERMINED (FIXED- 0RiENTATION CASE). COMPARISON
BETWEEN THE LAUNCH!NG BASES

Christian Marchal

ABSTRACT, Optimization of the extra-atmospheric phase of
ascent to orbit can be achleved by adopting certain simple
assumptions regarding cost qf travel through the atmosphere
and the height of the dense latmosphere. Choice of the
launch site depends on locaﬁ latitude and available launch
sectors. For inclinations of 5° to 117° obtainable at the
best launching station the aptlmum ascending trajectory is
always of the direct-climb type. For other less favorable
inclinations this trajectory may be of the three-nodal climb,
four-nodal climb, and otherg ypes. For the latter inclina-
tions substantial saving can be effected by use of atmos-
pheric braking and fast- cltﬂb trajectories with no inter-
mediate parking orbit.

i

i
A

INTRODUCTION -

The ascent into orbit is an essential phase of any space mission.

In many cases the orientation of
“example, when it is desired to place a
““geostationary' orbit, hence in the equatorial plane

' ‘“satellite on polar orblt etc. The study made in Part One is then no longer
“adequate [1].

The general study of optimization
.. ‘cated problem, on one hand because of t
* the other hand, because of the great number of parameters defining an orblt

It is nevertheless simplified if it is granted that:

1,

consumption which is a functi
of the orientation) of the ve

The optimization of the crossing of the atmosphere leads to a
on of the magnitude alone (and not
locity, with respect to the ground,
of "atmospheric exit' (approximately 40 to 70 km of altitude
in the case of the Earth).

The equatorial rotation velocity is small compared with the
satellization velocity (this not being the case for the large
planets).. - e

the target orbit is not open either, for
telecommunications satellite on a |
or else a reconnaissance

of ascent into orbit is a very compli—:
he crossing of the atmosphere and, on

21
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H

i

" The problem stated is then much s
a21muths” it can be solved in a very g

f restriction is in general only islightly
_broad launching sectors either in the n

5;quadrant

impler and, if the launch base is "all

reat number of cases. The "all azimuths
westrictive for bases having available
ortheast quadrant or in the southeast

i
H

The problem practically solved i

f the 1nc11natlon of the orb1t1ng plane

?:15 greater than the latitude of the launch location, still remains to a great
_extent indeterminate in the contrary case (much worse case).

BTN

Statement of the*Prbblem

How, beginning from a given launc

hing base, is it possible to reach a

%Hflxed elliptical orbit with the m1n1mum propellant consumption of a given

+ + rocket?

~minimum velocity for all high«thrust ro
~rocket,
~fore investigate these ascents under th

of the second order with resgect to the
~(relative loss less than 107
~minutes duration).

We shall assume:
A) That the planet from which th
and either devoid of atmosph
of which the aerodynamically
70 km in the case of the Eart
B) That the launching base is "a
rapld 1nspect10n of what may

C) That the cost of the optlmlze
independent of the orientatio
the ground, of "atmospheric e
it into account).

D) That the various perturbative
bulge, etc,) are negligible.

The optimization leads to the uti
etc...) whose use is required £

not limited (impulse case). The loss o

e Launchlng takes place is spherical
re or supplled with an atmosphere
important part is not thick (40 to
h). '

11 a21mﬁths” (we shall make a
be seen /in the reverse hypothe51s)
d cross;ng of the atmosphere is

n of the velocity, with respect to
xit" (consequently we shall not take

effects (owing to the sun, equatorial

lization of ascents of characteristic
ckets (chemical rockets, nuclear

or an ascent into orbit.
e assumption that the thrust power is
wing to this limitation is generally

It can be of the f1

duration of the thrust trajectories

in the case of the Earth for trajectories of 2

rst order for the first impulse if a

§Wtran51t10n is not made through an 1ntermed1ate waiting orbit [1]

S g,

2

Note that the characteristic Velo¢1ty is the arithmetic sum of all the

artificial changes in velocity.

Optimization of the ascent sometimes depends on the possibility or im-

ppssibility of accomplishing atmospherlc brak

The cases of finite lift-drag ratlo are clearly located between cases

11 and III.

ing at low cost. Hence we shall

We shall there—



I. mospherlc braking cannot be accomplishéd.

II. Atmospheric braking can Bew cbompllshed but the lift-drag ratlo of
the rocket considered is zero

IIT. Atmospheric braking can ' be acpbmpliéhed and the 1lift drag raglo of
»»»»» he rocket considered is 1nf1n1te.

The last-named case, in which the rocket can proceed throughout the at-

useful).

! The cases of finite 1lift-drag ratio are clearly located between cases
~II and ITII.

» On the other hand, it is possible to wish to make a transition through
:.an intermediate parking orbit, for example, for matters of precision. We
shall therefore also consider this case and we shall still assume that this
_parking orbit is located lower .than thewpgrlgee of the target orbit (if not
_the consumption for ascent int6 orbit would bé much higher).

~11.2 Notation

= We shall use the equatorial plane of the planet studied as reference
.plane and we shall employ the customary symbolé

The indices 1, 2, 3, 4...are related to the succ§551ve intermediate or-

“orbit) and to its components. : f

0 = orbit; a = semimajor axis; e =leccentricity; P = a(l-e) = dis-
tance from the perigee to the center of the planet; A= a(l + e) =
distance from the apogee to the center of the planet; < = inclination
of the orbiting plane to the equatorial plane; (0°<¢<180°, the planes

are oriented in the direction of rotations); Q= right ascension of the
ascending equatorial node;

14
1]

argument of the perigee
-k (= angle between the as-
cending node and the peri-
gee, in the direction of
movement),

latitude (north or south)
of the launching base,
0° < ¢ < 90°;

% = latitude of the perigee
of the target orbit,
0° < 4, < 90°, sin %f =

RS
i

| sin 2 sin w |.

mosphere without loss of velocity, renders all the stations equivalent to the
best one, the equatorial station (for which a non-zero lift-drag ratio is not

bits and totheit ¢omponéiits; index B relating to the final orbit ("target"ﬁwwq




‘3; of the launching site,

" n = altitude above the ground;
R = equatorial radius of :the planet .investigated;
""" E = Equatorial velocity of rotation of the planet investigated %= 465

m/s in the case of Edrth); Pa.n f %

K= c1rcular low velocity of the pplanet investigated (= 7,905{m}s in
the case of Earth).

é C’)"le'd‘+'2|AVl = characteristic velocity (? designating the
accelerations of thrust and AV designating the 1mpulses)

1.3 Results

11301

General Comments

On the parametei Q.

iy
It is clear that it is always pos

- the ascending equatorial node, as desir
. the suitable launching time. Neverthel
~slow (Mercury, Venus), it will be possi

if necessary, for. several months...If.t
~take place without waiting. The proble
~for launching from a polar base.

The parameter QB will therefore n

II) On ascents into parking orbit

The ascents into a more or less 1

-stage of space missions either because
;optlmum process or because it is desire
~for various reasons (technical convenie

etc...).

In each one of these two cases th

sible to obtain QB, right ascension of

ed, for an identical cost by selecting
ess, if the rotation of the planet is
ble for: thls reason to be led to wait,
his.is not p0551b1e -then-launch can
m is, in this case, similar to the one

i
{
t

o longer become a factor in the study.

ow parking orbit are a frequent first
they appear during investigation of the :

nce, precision of subsequent stages,

e minimization of the cost of the

“mission leads to the selection of as low orbits as possible (the optimum

~altitude being a function of the atmosphere).

On the other hand, it is not

obligatory for the ascent into the parklng orbit to be fast and it may be that

the best parking orbit will have a plane which does not intersect-the parallel‘
in consideration of the infrequency of this

However,

case and the complication of the maneuVers to which it gives rise, we shall

“assume it as excluded,

Under these condltlons, the optimum ascent into park-

1ng orbit is a fast ascent phasing immediately into the crossing of the

. “atmosphere,

24

d to make a transition to such an orbltg
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: We shall state for this first int
.circular as follows:

L TP

semimajor axis: a; = R + hg;

eccentricity: e; = 0.

inclination; il (withe <23 <1

into consideration.

dent of the latitude of the launching s
.arrives at a slight disadvantage for eq

_balanced by the effect of the planet's

~examine the question from the energy an
~rotation:
~same initial energy.

all launching sites located
The effect of the
theoretical characteristic velocity is,

1 km in the case of the Earth. ~-0n the

i ﬁhave a great deal of effect on ‘the cost

“or in the case of the Earth:

é‘thls formula is hardly modified:

é‘(hl is in this case the altitude of pas

ascent.

The characteristic velocity C; required for this first phase is indepen- |

ermediate orbit whose optimum shape is

80°--¢ taking the comment made above

ite. The purely geometric study which
uatorial sites is indeed exactly counter
flattening (it is enough, moreover, to
gle in the axis linked to the planet in
at the same level correspond to the
altitude of the launching site on the
moreover, quite little: 1.24 m/s for
other hand this altitude clearly can
of crossing the atmosphere).

2

’ c,, theoretlcal characteristic velocity (i.e., mot taking into account
~the cost of crossing the atmosphere) of putting into a low parking orbit is
‘only the function of ¢, and h,: ’

C, =Wk EC 2 EK oS Iy + 5 R

Cy = 7905 m/s — 465 m/s cos i, +

14

If the asymmetrles of the terrest

b=

The term at %k, is partly recovers

m/s sin® i, + [

7.911 mfs — 465 m/s cos i

hy
100 km] 62 m/s

rial potential are taken into account,

10 m/s sin? i, + [—————N:Ikm] 62 m/s

sage above the equator).

d in the subsequernt phases of the

25



The optimum altitude k; is a func

 study, the aerodynamic characteristics

tion of the atmosphere, the ascent under
of the rocket under study and the re-

~ tention time in the parking orbit .(a:time which is understandably advantageous

~_to keep short).

Comment In order to fully take

~ atmosphere

In the case of the Ear
¢ cluded between 100 and 200 km.

it can be said that everythi

th, this altitude is almost always in-

into account the effect of crossing the |
ing takes place (from the viewpoint of

characteristic velocity) as the first of one or more stages used for this
crossing produced a characteristic velocity equal to:

Go mvh+ ‘

with Vh horizontal velocity (with respect to the ground) of "atmospheric
exit" !
;
Vv = vertical velocity of ﬂatmosﬁhefic exit";
- hy = altitude of "atmospheric exxt”
p
: K h
t i 9. = &
(in the case of the Earth R = 150 km 124nus ko 0
at 70 or even 100 km according to Vv; Vv is assumed on the order of 0 to 1

km/sec and Vh of 0 to 7 km/sec).

It is the quantity Cg, practlcally 1ndependent of the orientation, which.

is suitable for optimizing during the crossing of the atmosphere.
ally leads to ' exits' slightly inclined to the horizontal.
stages should then supply the characteristic velocity €, -C

~complete the putting into parking orbit
precise physical direction.

" 11.3.2 Results in the Case where v < ¢

This is the most simple and econd

We shall assume that one of the f

This gener-
The subsequent

in order to
and C; possesses in this case a

< Oz
B 1807 --vp

mical case.

ollowing hypotheses is confirmed:

E
“Either — < 0,1, suitable for the planets of Mercury to Mars[.. Earth = i_)
/’ K . K 17
E
Or v = 0 and —< 0.5, suitable for all the planets of the solar system,
' K
E E
C_, maximum:= — Saturn = 0.41).
K

J ~*'?‘\“ij,,”

‘ The study of the optimum can then be made completely if o
= 0° or 180° (values which are; prec1$ely the optlmum values when a,, e,
are flxed) and it can be done 51mp1y 1f w # 0° and 180° on condltlon

s
i

is open or if|

2. N W



=

of a110w1ng, ‘with respect to the strict, optlmum, a loss (in characterlstlc)

f\veloc1ty) less than

..E}_313
2R

_or at the maximum 4 m/s in the case of

oo

BT
iy 8in? 1 — \/
> ”B[ TR o] ?

the Earth.

The optimum ascents into orbit are then of three possible types.

! These three types begin by a putt
}‘belng the case for the strict optimum if
~occasionally be skipped but it can alwg
¢+ .increase in cost be accepted (this beir

; We shall call these three types @
~Mascent through infinity" and the ascen
- the atmosphere',

1.3.2.1 The Direct Ascent

The direct ascent (Fig. 2) includ

SEer en

1ng into a low parking orbit (this not
# 0° and 180°). This stage can

lys Ee done provided that a minimum

g zero in the absence of atmosphere).

f optimum ascent the ''direct ascent",
It "through infinity and then through

les, after putting into a low parking

~orbit 0,, two impulses at I,, then at I

2 with én intermediate orbit 0,.

I, is-generally very close-to apegee A of the ‘target orbit and I,

}'generally quasi-diametrically opposed to 12.B ?

E

The optimization of the 1nc11natlon i of 0, and of the positions of I,

‘and I, is quite complicated,

to the strict optimum, a loss which instead of being limited to:

2

R sin? iy sin? wp

[i-

v

Ag + H]’
2 Ag

N

Ez
can rise to

Swith p

v
1 B
+\/22

(p, which is always positive, remains less than 1 if A
< 5.27 R), it is then always p0531b1e to place the p01nt I

B

fﬁ p sin? i3 sin? wg

RPy (A, + R)

]

< 3.21 R and than 2 1f
of Figure 2

~at the apogee AB of the target orbit.a

d the point I,

/6

P

Nevertheless, if there is granted, with respect

diametrically opposed to

' I,. I, and I, are in this case the perigee and the apogee of the intermediate |

27



orbit 0,. The "practical optimum ascen& is thus obtained (Fig. 3). The trans-
fer from 0, to 0B is of the 'generalized Hohmann" type [2]. The plane of 0,

- contains the major axis of O . »All that;remains is to optimize the values of
1, and %, (cf the annex). i 5

(or if Ag < 23.5 R in the case

of Earth) it is possible to
develop the optimum value of <,
as well as i, as a function of
the components of Op:

Let us grant:
‘ E T B 1,
3 = p 3= 74 sin ig [l — (p——l)-K cos lB] +

i

p. having the value defined in
the preceding paragraph. There
' is produced (for the "optimum

| practical ascent'):

© ;= max [¢; ip — 3 cos? wp] <K< iy

k Fig. 2. Direct Ascent. The Orbits 0 L
0, and 0. are in Generally very close*y iy =y 2 [1— \/—-—JR{ZA‘]:ilgiggig
Re]ated Planes. i P « 28 1 © © 7

; 8, is on the order of several degrees in the common terrestrial cases.
-The total characteristic velocity of the Hoptimum practical ascent" is:

§ ‘B practical =

K[ 2 A5 (1

A; + R
+__K[ (3R +
R '\/2AB+R)3'

- Bsin? : i 2 ‘
j*‘ “‘Z—K‘—B [l + ¢ [(cos QB - Schos :B) — cos? w,,]] +

i
{

Es ’
+ order [2 i (P* + 1) sin? I.B]



F|g 3 Optimal Practical Ascent. The |
are '"Direct Coaxial"

Orbits 0;,.0, and Opg
ones and are in Generally Very Closely

Related Planes (tl 5 < iB); b, Ag
(or A ) S N
48 | | R

m_l{____ﬁlz;__ KV2 BA%

4001
100

25
16

10

t
1
1
i
t
i
!
]
1
1
l

fid ‘E?"E“??TT% mr—z
. 3304 o 1558l ,; Pyl
1 15 2 $ 6 10 15625 mm @ R‘

. F|g L4 Value of the Term;’

Ve (- B) ¢ VE G a)

‘ 55 a function of gE.and Ap

It is approprlate to comment /7
that for the "optimum practical ~
ascent' and, moreover, for the
corresponding direct aséent and
strict optimum the follow1ng is
Lilstrues

__(BR 4+ Ay) VA,
w/2(R+AB)

Efsin? i, [ A, S
§~ ,8| \<-. ‘s (R \]3/2 2 72): si AB 5 27 R
if AB =2 5,27 R,

EZ
(—— = 13.7 m/s in the
2 XK .case of Earth)

. The parameters ¢ and wp
very small factor in the cost of

the ascent. %, is a small factor:
in the case of the Earth the term
at hy is:

are a

) smpsifhs =2R

- 23 m/s%i_f A, =8R

The parameter i, is more of a
factor: E cos ip gives only 465
m/s cos 4, in the case of the
Barth (much more, however, for
the large planets). It is clear-
ly the first term which is the
most important. It is always

included between K and 1.536 K.
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Figure 4 shows its variations as a function of P, and Ay, It may be espe- |

;1cia11y noted that it is alway5§1 3§5mhan §K1&&~ if.PB < %-R and more than‘

(‘wif Py = 3.304 R. The orbits with low perigee, even the very eccentrié ones,
.are more accessible than the fdriorbitss ivis *

11.3.2.2 The Ascent "Through Infinity',
This second method of optimum ascent is quite rarely the best one and the

' Saving which it allows with respect to the "direct ascent" never exceeds K.0.043
.+ E (cos g-cos <p) which is little in the common terrestrial cases. ‘

Figure 5 shows it in a case where wp < ¢. There is then successively:

1. A putting into waiting orbit 01, with inclination il =y
(launching towards the East).

2. Three successive impg§§g§;q$f22,yA‘wand P, with two very
elongate intermediate ellipses”0, and 0, with common apogee
A,. The orbit 02 is tangent to "0y at its perigee P,

ﬁ@herefore 1, =1
their common perigee P, (therefore i. =¢@ ). The three

~-0rbits--0,; 0g,-0g-have the sémewdireétidn of major axis
(determifiing P,). The impulse at Azgis very slight.

= ¢), the orbit Osgis tangent to Op at

— - : - - The characteristic velocity ofi
' the ascent is: f

-

It is advisable to add to C =
the loss owing to the unavoidable
non-movement apart at infinity of
A,. This loss, if A2 is major, is:

.SCw=K—A— ‘SR[\/PB—}—R——2cosoc\/

“Fig. 5 Ascent Y"Through Infinity'

o being the angle of the oriented

% planes of 0, and 0; (the arrange-

ment of Figure 5 with an impulse at A, - merged with Az - corresponds practi-
cally with the optimum when the duration of ascent into orbit or even the

maximum movement apart is fixed).
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1;_tance thls solution offers no practical advantage for planets with slow rota-

- FOfMA2W= 60 R §Ce is; in the case of Earth, on the order of some tens of
m/s. .

If w% > ¢ the arrangement of Flglre 5 cannot be realized. It céuld

. theoretically be possible to obtain thecasdent into orbit for the same cost by
_.interposing between 0, and O3 a very far intermediate orbit 02 which would /8
_.allow placing 0; in the desired orientdtion (0; with same plane and major axis
. as 0g) but, glven the very slow decrease of circular velocities at great dis-

tion (Mercury to Mars). It would be worthwhile in this case to somewhat modify
..the orientation of 0 v < t <y ) and the arrival point on 0 C » is then

~at the increased maximum of the quantlﬁy

gy

%\/K‘-} h‘——-2hK €03 %——‘\/K"-}— E2—2EKcoso

j (or practically E (cos ¢ - cos ¢ )

1.3.2.3 The Ascent "Through rﬁffﬁfty théﬁufﬁ?oUgh the Atmosphere''. %

This third method of optimum ascent is also rather infrequently the best;
-and the saving it allows w1th respect to the "direct ascent" never exceeds ‘

E(co;cp - coszB) - K \/2— \/A2f1§-'§'ﬁ]
g o, . RN B

which is very 11tt1e in the common terrestrlal cases. What is more, it requires
~ that atmospheric brakings be possible (with a lift-drag ratio which can con-
~veniently be zero).

Figure 6 shows it in a case
where %n < ¢. There is in this

case successively:

1. A putting into parking
orbit 0; with inclination
1y = ¢ (launching towards
the East).

e . 2. Three successive intermedi-
- ' o ate orbits 0,, O3 and 0,
‘ separated by: a tangential
Fig. 6 Ascent ""Through Infinity then 1mpulse at P, (therefore
Through the Atmosphere. T, = 1] = ¢), an infinitely
small impulse at Ay, very
 far common apogee of 0, and 03, an atmospheric braking at P3 (merged with Py),
‘finally a tangential impulse at Az (or A,). <, is equal to iy but owing to .
the rotation of the planet a slightly different Z; should be chosen.
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The characteristic felocitykofifﬁe ascent is:
c,,,m \/KZ TEZ7EK o

(2—~vr)+

The comments made on the ‘subject of ascents "through infinity" can be re-

;peated here. Espec1a11y concerned is the loss owing to the non-moving apart
~at infinity of A, is (for A, major)

. scwatm == KR \/5

i(a being again the angle of the orlented planes of 0, and 03).

11.3.2.4 For the sake of completeness, it is adv1sab1e to mention a very ex-

. ceptional case of optimum ascent only occurring when ¢ # 0° and when atmo-

~ spheric brakings (and hence the ascent "through infinity then through the

atmosphere") are impossible, This case uses, between the parking orbit 0, for
which 2, = 4 and the target orbit OB, a "three-impulse" transfer similar to the

‘i one described in reference 2 (and even»strictly identical if wp = 0° or 180°).

~II.3.3 Results in the Cases ip < ¢ and ig > 180°-~¢
. %
These cases are at the same time the most complicated and the most costly

We~sha11‘stlllwassumewg. < 0.1 and we- shall additionally assume; -in order

- to avoid problems of sign, that the launching site is in the northern hemisphere.

. The optimum is then a function of the will to make a transition or not
~to a low parking orbit.

1.3.3.1 Case where it is De5|red to make a Transition to a low Waiting
Orbit. :

The optimum method of ascent can in this case be '"through infinity'" or §
~even "through infinity then through the atmosphere", cases similar to those =
obtained for v < tB < 180 ~¢, (II1.3.2.2 and II.3.2. 3), but the saving realized

fwithmfespect to a "direct ascent" can be very great here.
If the parameter wg is open, or even if sin wp = 0 (0° and 180° are the
~optimum values of wp when ap ep and iBéare fixed), the study can be made

completely. In addition to the two caées above, the following three methods
~'may be met: ; : '

I. The direct ascent, similar. to the one found in paragraph 11.3.2.1.

In this case, Ij and I, are the apexes of the major axis and the
equatorial nodes of 0, .. The value .of i, is: ¢ if g £.9., &
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~-cases;

function of the study performed in the annekwifwzé $7180%0

IT.
0p by a "three-impulse transf

'?ré here at equatorial nodes):

i =

N
ot
1

The "three-nodal ascent!! (Fig.

7). Transition is made from 0; to
er'" of reference 2 (the three impulses

!

The Line
of Apsides is also the Line of the
~Equatorial Nodes.

Fig. 7 'Three Nodal Ascent'!,

1y = ¢ if 15 < ¢ (this is, more

v if 1_ <.
: B
= ¢ or 180° - ¢
i if 7:B > 180° - 'po
III. The "four nodal ascent",

version with a point A, at
finite distance of the as-
cent "through infinity then
through the atmosphere'.
(I1.3.2.3) The orbit 0, is
not in this case in the
plane of 0, and the orbit
0, is not in the one for
OB. The corresponding im-

pulses, at P, and A;, are
not tangential... .

Here again: 7, = ¢ if iB

<y and 7, = ¢ or 180°-y
if iB > 180°-p,

It can be noted that in all
over, still true if w # 0° and 180°,

i

~cases for which study is not yet complete).

11.3.3.2 Case where it is Open for Tra

nsition to a Low Parking Orbit

In this case there are again found, of course, ascents ''through infinityﬁ

i
§

‘Nevertheless, if we state:

|

10 3 = ¢ —

..._LB

i

ap
30 ¢ = max (3i, 3a).

~and ascents "through infinity then through the atmosphere' when the target
~orbit is far or even very eccentric., The common cases, however, are not solved.

i

kY

e
siig > 180° — o.
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.. | this parking orbit.

H
H
¢
i

We can write:

- If ¢ is minor and it is not. poﬁsibl@ to use atmospheric brakings the

' _best of the two-impulse solutions (theyefore with one immediate impulse,

‘mgenerally§ob11que and the greater of the two, and one other impulse to the

_target orbit) represents, if nétwthe: @@tlmum,“whlch is quite frequent, at least

_.a solution very close to the optlmum (the loss, in characteristic ve1@c1ty,

_.is never greater than the order Ke? and probably even than the order Ke3).
i

. Assuming the launching site to be in the northern hemisphere, the

..characteristic velocity of the ascent is then:

|

If it is true ep sin w, = f.

B
It follows that:

First case; ’ ?
FHaiYEs s

Ca [1‘*f + 5 \/%]i:E(qu<+

e 2
+ order [2K- _Sin” ¢
TR

(this-expression is not exact-in the very- exceptional. case where

909 < g < 11593 et gg > 0,97572). -

S d : Y o
econd case f+ Sikl‘/g Q'Sa

CB=K[1+f— —l—\/&.2 8a~—i

The quantity + E cos ¢ should be taken as equal to +E cos ¢ if 7, > 180°-
¢ and to -E cos ¢ if tB <y, ;

It is possible to compare these values of C, to those obtained when there

“is an obligation to make transition to,a parking orbit (the ascent is generally“
~of the "direct ascent" type). We shall disregard the effect of altitude on '

It follows that:

e,

First case: ‘i U aqfh/“

CB““['IJ‘I“—*Fal

Vf]:i EthQ +~ordar
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Second case: 3 B‘a‘z‘
. E? sin® o] B
TR

Cs=K(1 + X) + E cos o —{brder[g*K
B e

The refusal to make transition through a parking orbit can provide con-
31derab1e saving: thus, in the extreme case where'

(therefore eg = Sg; wp =

: 1f a transition is not made through a parklng orblt and
sition is made. ‘

‘&J if a tran-'

I1f;in-addition to--the possibility of not pa551ng through a low parking
orbit, atmospheric braking (with a lift-drag ratio of zero) can be carried out,
- it is still possible to make substantial savings (the ascents of this type in-
clude one or two impulses following the singlekatmospheric braking).

This, for example, in the case e = 0 and ag = R, with the order

B2 sin?

CB =K (1 + 8¢) + E cos v if transition made through a low parking orbit (withi

or without use of atmospherlc braklng)

}CB-—I\(iﬁ-Slxﬂﬁ i.ECOSQ if tran51tion not made through a parking orbit

and if atmosPherlc braking not used.

jﬂg (1+-m‘vﬁ)i;E(ms¢ if transition not made through a parking orbit

R e

and if atmospheric braking not used:

(Mﬁ -0661<:‘/3f

‘66<<1}

We shall not further study ascents of this type which still remain to a
great extent unexplored. It is true that they correspond to worst case in
which the target orbit does not intersect the parallel of the launching site.
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- rorbit for a very slight increase in cos

 _.ndirect ascent",

1.4 Discussion

« In a special determined c¢ase, (it i
suvestlgatlng which is the optimum method

Hen@e:

" First case: Atmospheric braking
~_the rocket investigated is infinite.

It is then possible to develop gr

sphere without losing velocity and the
. to the best among them, namely the equd
to that of the case ¢ = 0° (for which

Second case: the lift-drag ratio
v <2y < 180°-p, |
It is then p0551b1e to make trans

: The optimum ascent is of the "dir
~1nf1n1ty then through the atmosphere!
~-braking).

The comparison of the two last-me

a4 non-zero lift-drag ratio is useless).

t.

of ascent

{

§ /10
can be used and the lift-drag ratio of
adually without cost in the whole atmo-
various launching sites become equivalent

torial site, The discussion is reduced

of the rocket investigated is zero and
ition to a low intermediate parking

ect ascent! type or even 'ascent thrqugh
the latter requiring an atmospheric

!
§ R
theds leads-practically to:--

R\ ... - . o
PB<<4I‘(4*‘;;) the "= atm' method is better than the one '"through in-

{
i

finity".
Py 4R (1 + 5 ) this is the opposi

There remains the comparison of t
Thus, for example.

s Z] !

If: AB<R[2

3

te.

he better of these two methodéwwith thef

E{cos¢ —cosis) &
o] n

. ‘ 12
Or ‘lf. B \ R__[cos'<p—‘~co_szB

the case of the Earth the "direct ascent"

is better than the ascent "through infinity then through the atmosphere'.

Likewise,

11 1

in the case of the Earéh,

COS @ — €08 Iy

if

1. 1

R [11,938 +

“the "direct ascent! is better than the
Ag varying from 11.938 R to 5.04 R).
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i;offerlng furthermore the advantages ‘of: s

QT

; " From the préctical viewpoint, it
_presents the customary solution for the

Thlrd case: iB < 9 or even iB >

The optlmlzatlon of the ascent in

.tion of the capability of performing atmospheric braking and of the need to
- make transition or not to an intermediate parking orbit (cf. Fig. 10 in the
following Chapter II.5).

Figures 8 and 9 show the results

is desired to make tran51t10n to an 1n
4y and with radius R, = = R+ h1 anc
or equal to 0° or 18& The optimum as

"three-nodal' (cf. Flg 7) or "throy
optimum value of 7y is always ¢ if iB

ican be said that the "direct ascent" re-
optimum ascent into orbit, a solution
simplkicity, convenience and speed.

¥
¥

180° —p.

to orblt is in this case a strong func- |

of the discussion as a function of the

parameters:
Ag | Pp
l%B ~ ;| and == on ome hand, er - ;| and =
1 1
_on the other hand in the case where atnospherlc braking is not used, where it

“rmedlate parking orbit with inclination
‘where the parameter wp is either open
cents are the direct (Eere two-nodal)

gh. infinity". (Keep in mind that the

<v).

he dlscﬁsslon,ls a function of’ pB

Ry

i

3 o] Ascent''through infinity" ! |
| "Through infinity" or three-nodal ascent |
Three- nodaqoascen , “Ascent either direct, ''through
pfFéctior/three- infinity'" or three-nodal
nodal $sgent. ,
i / - Direct or 'ithrough
- a0t infinity'{ ascent

Direct ascent
(here two-nodal)

Fig. 8.

of Ascent as a Function of A=

and of i“B”'“L

i 1
g /R 2

Dlscus5|oﬁ of the Optimum Method

(-

)
a,‘ i
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Es R

e

ok A

© (with, of course, ¢ < ¢, < 180°-¢).
 (or south) azimuth available is approx1mately equivalent to a polar azimuth. |

- | ~ In doubtful cases the comple-

W srene fmmtesi s, tion of the discussion is a
4 . o : ' A, H
Al ﬁl?fﬁ——— ..+, function of _f: {
4 “Throu?h infinity" or three T R |
A nodal ascent |
1
i

Ascent ‘'through  infinjty!'

Ascent of one of the If ep = 0, or if Ay = P, the

IDPPdct or three
! . three methods

no §1 ascent

three-nodal zone is with maximum

30°- extension.

Direct astent General comment: if
(here two-nodal) ‘ .
; - . | 3 ! { ) 1 L 7 \ Pz >=9R {1+ w
‘{ 0" , 3 & 9 B/FR 1¢ kA

B

; Flg 9 Dlscu5510n of the 0pt|mum Modé

the optimum ascent is always of

'of Ascent as a Function of g’( zﬂ ! _the "through infinity" type no
1 "and of iy — il - ‘ g ~ matter what the values of 7, v
- S and U.)B.

;%11.5 Comparison _of the Various Launching. Siteé

- We have seen from the space viewpc

int, that the advantage of a launching

‘m(except insofar as the cost of crossing the atmosphere was concerned). The

_essential components of this problem then concerns the latitude and the one or
_more launching sectors.

: For practical purposes, unless acrobatics of the angled launch variety
are contempleted (useable if the second stage, which is lighter, is not reduce
~to the same launching sector as the flrst one) or even if consideration be
-given to quasi-vertical launching (useable profitably by bases having available
~only of either a very small sector or an entirely western sector), the ad- 5
~vantage of a launching base is defined by the aggregate of inclinations Z; of |
~low parking orbit which are dlrectly accessible from the base in question

In this way, a base having only the north

3

The inclinations 73 greater than 90 , corresponding to western 1aunch1ng

“azimuths require a more costly puttlng in orblt than those for which ¢ < 90°

Z“and little used.

(owing to the rotation of the planet). § They are therefore less advantageous

It should nevertheless be noted that they can fulfill some
specific missions whether the measurement sought after is a function of the

direction of movement of the satellite (e.g., measurement of upper atmospheric

“winds) or whether use is made of secondary effects proper to the target orbit

.38

“tions allowing for example,

‘such as those resulting from Eerturbations caused by equatorial bulge, perturba-

e maintenance without cost of the node, or

site was not a function of its longitude and had little to do with its altitudé

A
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periéee in a direction almost fixed with respect to the sun on the condition .

- that aps €y and tB are appropriately selected (for the node, if the orbit is
low, iy is close to 100°). B R

H

But, out51de of these casesy:ithe:ieasterm launch azimuths and 1nc11nat10ns
ig less or,equal to 90° are always preferable. v

On the other hand, two launch azimuths, symmetrical with respect to the
egst-west line, lead to the same inclination %, of low parking orbit. They only

prov1de, therefore, an advantage of manageablllty (two hours daily when launch-
ing is possible 1nstead of one). :

Therefore, in practice, for a given latitude ¢y the best base is the one
having available a launching sector which encompasses the whole northeast
quadrant or even the whole southeastJquadranteamd,so far as ¢ is concerned,
the best base is the one closest to the equator.

It can therefore be concluded by, statlng that the Kourou base of our
fellowcountrymen in Guiana, at 5° ‘north latltude, is, from the space viewpoint,
the best or at least one of the best in the world. It has available indeed
a launching sector of at least 140° from the azimuth of 330° (or-30°) to that
of 110°, passing through the north and east (allowing directly reaching the in-
clinations £, from 5° to 117°), a 5

‘i

Figure-10 illustrates. the 1mportance -of positlon and-launching sector of
the launch bases. It shows the characteristic veloc1ty of ascent into orbit
in the extreme case in which the target orbit is equatorial and low circular
(altitude 130 km) as a function of the latitude of the "all azimuths" launching
base, or, which amounts to almost the same thing, as a function of the minimum
inclination ¢; which is d1rect1y acce551b1e from a glven base (if it is possible
to launch towards the east ¢, mini = ¢, if not Z; mini > o).

Of course, this importance can vary greatly depending on the target orbit.
Thus, the cost of installation on close polar orbit (A, < 5 R) is almost the .
same for all bases having a north or south launching azimuths.

One mean case is supplied by far equatorial orbits. Here, the cost of
installation on geostationary orbit varies from 11.45 km/sec (equatorial base,
launch towards the east, direct ascent) to 12.45 km/sec (polar base, ascent
"through infinity" and even to 12.91 km/sec (equatorial base having available
~only a launching azimuth of 270°: towards the west, ascent "through infinity").

X = ¢ if launch can be made towards the east from the base selected.
Otherwise X = <; minimum accessible (hence, in this case X > ¢).

The dotted line curves can only be used if there is no requirement to
make transition to a low intermediate parking orbit.

1. The three upper curves relateﬁto the case where atmospheric
braking cannot be used; the three others in the case where it
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advantage of a launching base is practi
the inclinations of low parking orbit d
_ an aggregate which is, of course, a fun
* of the one or more launching sectors wh

~clinations go from 5° to 117°.

- |

A i A

infinitY*

50 (in km/sec)
R <
T~ ! Q

hscent "EHEOU

scent 'through

infinity" then

. < through‘the‘atmosphere
Fourfnodal 7 - o]
ascent 4
L ‘ g
- /8
v/
.9 v

-40°

60°

80° 100°

i
3

Fig; 10 Cost Cy (in km/

Circular Equatorial Orbi

Function of X.

CONCL

The study of the optimization of

orbit is elliptical and wholly determin

sec) of Ascent into Low

t (h 130 km) as a

B

USION

the ascent into orbit when the target
ed is still very incomplete.

The results already obtained allows nevertheless the statement that the

In the best case at hand (Guiana!

cally determined by the aggregate of i
irectly accessible from the given base,
ction of the latitude of the base and
ich are available.

base) these directly accessible in-

For these inclinations the optimﬁﬁimethod of ascent into orbit is most

“often the "direct ascent" which has three rocket phases (one ascent into low .
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ilntermedlate parklng orbit, then a transfer similar to the customary perlgee-

apogee transfer). Nevertheless, if the
"through infinity" methods can become. (

& :the study has remained very incompleti

. make a transition or not to a low 1ntermed1ate parking orbit.
_orbits are classified into many more or less compllcated methods.
_advantageous to study these cases somewhat more in depth, but in practice, of
it would be sought to avoid them when selecting the suitable launching

© . course,
base,

AN

Optimization of the values of 7,
(Fig. 3).

: The investigation will only be
“. (case in which the "optimum pra ‘
- The investigation would be similarly pe

1. Investigation for v

Since the two first propellant ph
they can.be.carried. out. together,. . Ther
- pellant phases., j

b

I

Wlth respect to the other 1nc11nat10ns, which are much more unfavorable

and 7, in the "practical optimum ascent'

. target orbit is far or very eccentric,
It +is: much a function of the need to

The optimum
It would be‘

NEX

le in the case in which w, = 0° or 180°
ent corresponds to the strict optlmum)
rformed if sin wp # 0.

i

ases are carried out at the same place,
e.are therefore only.two distinct pro-

!

; The first one leads from the
-—>

FE (Fig. 11) in the

-
velocity V

equatorlal plane to the perigee veloc1ty
of orbit 0,

‘the second one leads from the apogee

velocity of orbit 02:

- -

L V. = FAL- ~
Va, A,,(FA2 ~ K \/A_..__B e

)

‘to the apogee velocity of the target

orbit:

i

i:Fig.,«l.l_uHodogwr,aphis: Diagram

v 2 I
Vay = FAy; (FA, = K \/_._.__B___)
o ( TV V EE TR
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‘From the impulse viewpoint, the dptlmlzatlon therefore consists in find-

. ing angle %, such that

!

s mlnlmum The point P, on segment . EP2 and ‘at distance K from F defines in

N

_this case the optlmum inclinations of the intermediate parking orbit (%1 = EFPl)

If we grant FV = E?FAB the mlnlmlzatlon of 4"% l+|A,AB| is 1dent1—
_cal to that of IEFA-nglPJI which is a problem of ordinary optics.

The angles Ay+8,,03,a

are obtain

ed in this way and are those defined on‘

A L
Figure 11.
~ Esin o = Ve, sin o, = VA; sin oy = tVMsin P
a,fa2+a3+a4=360°—i3 ‘
, : (1)
are acute
. 1 1 i 1 i
if: R T kv
) IE VA' } Vy. +VA3' : ‘ i
~or even if: iy < Arc cos R LE, Vo] | Arc cos I min {Ié :\\’&,]
. Py
- . [ aal trajectory

~which is almost always the case. The e
‘.root and one alone and the theoretical

Otherwise the equations and inequ

roots. In the latter case, the central
of C,, hence having no interest. The t
* whlcﬁ are equal if E = VA (in this cas

Otherwise, the absolute minimum is obta

quations and inequalities (1) have one
problem is completed.

alities (1) have either one or three
root corresponds to a relative maximum

wo other roots correspond to minimums
e it follows that aj + o = 180°).

ined for ag > 90° if V 5> E and a; >

90° if Vy, < E (each time there is one

E < VA

:~the case of the Earth.

corresponds to Az <R [

root and one alone).

QK

< 23,5 R in
Bt

or AB

“

11

The relative minimum can correspend to the optimum in the case where the

i‘launch sector of the launching base is

Investigation for ¢ # 0°.
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”tét“ZHQ“Béwfhé iﬁéiination correéponding to the absolute minimum éﬁ&wm‘“

it@lm the one corresponding to thﬁipogﬁi§lggﬁglative minimum.

|
;

The optimum value of %, is:

il-—;im si sin iy > sin

: P
=9 ou 1800 ~ ¢ ou tm

if sin iM < sin ¢, the three cases should be compared (this comparison is nevef

A2

In the case in which the launch sector of the launching base is limited,
the optimum value of Z; is ilM (if this value is directly accessible) or,

favorable to 180°-¢ if iB < 180°% and it is never favorable to ilm if E<V,.).

otherwise, ilm or one of the limit values.
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OPTIMIZATION OF THE EXTRA<AEM
TRAJECTORY T

PART THREE - THE TAR@ET‘@W&

FOR AN INTERP

Christia

ABSTRACT., When impulses are;
always lmpuISlonal only. ThQ
always of the semi-direct or.
thrust limitation are moderaﬁ
very slight for the other pul
problem the kinematic charact
fers in the solar system are
-and disadvantages of intermed

s

INTROD

The ascent into orbit is an essen
In many cases it is necessary to
escape velocity. For example, if the t

attraction" of the earth, the geocentri

: The optimization of the ascent in
parts: ﬁ

Optimization of the crossing

Optimization of the extra-atm
orbit,

3 The first problem, and by far the
~ the subject of many studies (e.g., ref
' ed with aerodynamics.

a3

‘ The second problem, alone studiec
all high-thrust vehicles (those clearly
The factor optimized is the expenditur

4

o e
PR SO, NV % SR
Rt ATRL G A R ENE RPRSLRE

OSPHERIC PART OF THE ASCENDING.
0 AN ORBIT g
FT IS 'HYPERBOLIC (DEPARTURE
LANETARY MISSION)

n Marchal

1allowed, optimal ascents are
optimum solution is almost
direct type. Losses due to
e for the first impulse and
ses. In connection with the
eristics of the Hohmann trans-

‘given and the main advantages

iate space bases are discussed.

i
:
i

UCTION
tial phase of any space mission.

acquire a velocity greater than the
arget is outside of the '"sphere of

c target orbit is then a hyperbola.

to orbit includes two very different

of the atmosphere.
ospheric phase of the ascent into

most complicated of the two, formed
srence [1]). It is plainly closely 11nk—

here, leads to similar solutions for
:necessary for an ascent into orbit).
of propellant this 1ead1ng to the use
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The study leads to impulsional:so

| practlce w1th a slight loss, by means

Normally, of course, it is raquirgd ‘to’optimize the aggregate of the two

_operations at the same time:
.flight path,

crossing

.examined (we shall nevertheless assume
~elliptical or parabolic velocity).

 1||.1

: Upon Y"exiting from the atmosphere!
‘mlmportant layers, or toward 40.to 70 km
moving body is propelled by a determinet
~How can it be made to reach, with minin
~mined final hyperbolic orbit of asympto

.the "sphere of attraction').

. We shall assume that: 1.
24 The -velocity V.

~heavenly bodies can be disregarded.

o In the case of vehicles for which
 utilization of the maximum ejection vel
~rockets with non-variable ejection velo

¢ of solutions whose.chareeteristic velocity ds.minimum.

This generally leads to t
_which are slightly inclined to the horizontal.
~ ..the case (e.g., if only western launching azimuths are available.
_.concern for the general aspect, nothing
_velocity of "atmospheric exit" considex

Description of the Theoretical P

The at
is elliptical-or pa

lutions which can be carried out in
of short-duration thrust trajectories

/4
of the atmosphere, then extra—atmospherlé——
he use of atmospheric exit velocities ‘
This is, however, not always
Also, out of
special will be assumed concerning the.
ed as initial velocity in the problem

that it is always a matter of an

roblem

(or at least from its aerodynamically
of altitude in the case of Earth, 2 ‘
d absolute planetocentric velocity V0
jum expendlturg of propellant, a deter-
tic velocity V £ (exit velocity from

tractlng planet has spherical symmetry,f
rabollea .3, ‘The.influence .of external

max1mum thrust corresponds to the ‘
ocity (chemical rockets, nuclear rocket
city, etc...) the minimum expenditure

of propellant always corresponds to the use of minimum characteristic veloc1ty

\~solut10ns

We shall therefore investigate th

~minimum characteristic velocity, first
~~(this leads to impulse solutions) then

~slight, when the maximum thrust is limj

le optimum ascents from the viewpoint of |
of all when the thrust is not limited |
we shall calculate the loss, generally
ted,

We shall disregard the case of rockets for which the maximum thrust does;
~not correspond to the utilization of maximum ejection velocity (nuclear electric

111.2 Symbols

rockets with variable ejection velocity
supply a low thrust impossible to use 1

>

, etc...) for these rockets generally
or an ascent into orbit.

In order that we might conform to the most widespread usage, we shall

~reserve the index 0 for initial ("original') conditions,
.for.th

.. conditions and indices 1, 2, 3..
* mediate orbits used.

index f for final
rust phases and for successive inter-
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7> = initial absolute planetocenﬁrlc velocity (Mexit velocity
from the atmosphere'). ‘

"; inclination of V toithe horlzontal plane (Fig. 1).

5 final velocity (planetocentrlc ‘exit velocity from the "sphere
of attraction').

= characteristic velocity = arithmetical sum of all the artificial
changes of velocity.

¢, = planetocentric latitude of fhe direction of V (-

R = radius of the atmosphere (-‘6370 km + 40 to 70 km in the
. case of the Earth). !

2 5 .
L = %\//ﬁg = escape velocity at the level of the '"atmospheric

exit" = (11,13 km/sec in ;héac%§e49§ the Earth).

K = \/@% %&jJV§: = low cirgular velocity (= 7.87 km/sec for

the earth).

U= : grazing Veloc1ty for a V€1001ty Vf at 1nf1n1ty
% = trajectory sin E;qfixﬁ =: semi- angle of dev1at10n for a gr321ng
i Vi

i
1
%

hyperbola (Fig. 1),
- : : 111.3 Study of the Problem

For once the solution of the
problem is simple. Let us con-
sider it indeed from the energy
viewpoint alone in the absolute
planetocentric axis. It is
necessary to go from the energy
corresponding to the velocity V
at the '"atmospheric exit'" to
the one corresponding to the [

. velocity Vf at the exit from the
"sphere of attraction'" (or even
to the velocity Uf at the level

- of the "atmospheric exit').
The economical changes of energy are made by the lowest ;pessible tangential
thrusts. The characteristic velocity Cg of the ascent is therefore at least
- U - V). o
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1114 Results

? Fig. 2 Theoretical Optimum Ascent

We shall see that ow1ng to suitab

_velocity Cg = Ug - V, can always be very closely obtained.

W e g e
BHRE NS

- From the theoretical viewpuint: the,optlmlzatlon of the problem at hand is
«N51mp1e (Fig. 2): ,

1. A first immediate tangential

2, Two very far and very small i
from quasi-~parabola,

3. At the perlgee (grazing) I,
¢ orientation is suitable, the
carrying the velocity from L

" at the apogee of 07 and 0,) the small i

) impulse carries the velocity from
Vo, to L, The orbit 0; is therefore a quasi-parabola.

mpulses at I2 and I, allow changing

le maneuvers this characteristic

of the quasi-parabola 0z, whose
4th impulse takes place tangentially

‘;tO Uf

e The total characteristic velo- /5
i 01ty of the ascent is therefore

Ce = Uf 0

~ In reality, such a solution
offers little practical advantage.
;ndeed, it is necessary to remove
Ay -and’Ip-to-a-very great dis--
|

tance in order for the velocity
on O2 to be low (thus, at the

limits of the '"sphere of attrac-:
tion" of the Earth, at approxi- .
mately r = 240 R, the circular
velocity is still on the order of
500 m/s causing all the savings
procured by the theoretical
solution to be lost).

This is why it is much more
advantageous to use the semi-
direct solution which commences
like the theoretical solution,
but at I, (located practically

mpulse used causes transition to the

; grazing semi-parabola 0, allowing completion of the ascent with one less im-

3‘“pulse for the same total theoreticalﬁghgxacteristic velocity Cf = U, - Vb.

f
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If ¢2 is the“geocentric lati-
tude of I,, it is possible, by

appropriately selecting the
launching time and the orienta-
iristion of the plane of 0, around F,

Iz, to obtain any velocity ﬁf

whatever whose direction is in-
cluded between the planetocentric
latitudes gma..[?zs.mﬂ
ancl§ 1% + o] = 900,

‘ The chief advantage of the seml-
| direct solution is that, if D is:
called the distance from 12 to

_....the planet center, the impulse
""" required for it is on the order

% of L E_instead of ;I, B
Fig. 3 Semi-Direct Ascent é D ;

Comment I: The loss owing to the non- separatlen of I, at infinity is fof

2
.all practical purposes '———x/1+—um2@ —-2cos§;es®m dlaelng the angle of the planes

of 0 and 0, (planes oriented in the dlrectlon'of movement). For the Earth 1n

the case D = 60 R the loss is hence onthe order of 100 m/s (the duration of
-roundtrip I; I, Ig is in this case 10 days which is completely acceptable

{“given the durations of interplanetary voyages). j

Comment II: The optimum altitude of 13 is a function of the atmosphere.

~For the Earth it is almost always included between 80 and 120 km. The loss
owing to this compromise is on the order of 20 to 80 m/s.

Comment III: If the total impulse Cf = Ug - VO is applied tangentially
E*at one time to point Il, the "direct ascent" (Fig. 4) is obtained. It is

““clearly more R;actlcal than the "'semi- dlrect ascent'" of Figure 3. However, the
~direction of Vf is imposed in this case (or at least the geocentric latltude

of this direction, since the latitude can be selected by means of the launchlng /6
“time). Nevertheless, it is possible to obtain latitudes at 5° or 10° on one
hand or the other, for a loss similar to those of the ”seml direct'" solution
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Fig. 4 Direct Ascent

- Fig. 5 Direct Ascent-Case:
“%«.0 Ve, < K.

‘the altltude above the "atmospheric ex1t".w

Iy
L

“iihe: ’

b2 Specual lmportant Case:
Dy 0; V.,<K

It is very common for the
"atmospheric exit' velocities to

H

1. slightly inclined to the
horizontal.

2. less than the low circularé
velocity K.

It is possible in this case, at
the cost of a very slight increase
of characteristic velocity, to
make transition to an intermediate
low parking orbit, thus procuring

o8 great advantage in controll-
ability (the low parking orbits
~ are, moreover, often systemat-

1ca11y uses for reasons of techni-
cal convenience, precision of
later stages, etc...).

: PRI :
..Let-in this.case-i, be the in-
ellnatlon to the equator and h
the mean altitude of parklng
orbit (whose optimum shape is
circular because of losses owing
to atmospheric braking). The
direct ascent (Fig. 5) with two
propelled phases, one immediate
for the puttlng into parking f
orbit O the other at I for the
i
acquisition of hyperbolic velocity
N ‘

Vf, has for characteristic velo-

c1ty
G =1 - V,, + ] ) + ordre K ﬁi'
Kn _ - 124 ot}
R 1100 k )
. m

in the case of the Earth,
(strictly speaking, since K and
R have the values defined in the
symbols (III, 2), hl'should be

: 19



" This ''direct ascent" allows reachlng%)through selection of 1aunch1ng

time and the p051t10n of I,, any ve1001ty £ of direction included between the
latitudes +11 and —11 o P

Commenf' For parking orblts on 01 not exceeding several days, the

_v

optimum altltude h, is, in the case of the Earth almost always 1nc1uded bet-
- ween 100 and 250 kum,

For higher latitudes the "'semi-
direct ascent" (Fig. 6) similar
to that of Figure 3 costs for
practlcal purposes:

o . Kh e
C=U, ~ o+—l(1—%‘3)+2lﬁRsin§

D being'the distance F I; and

"""’y the angle of the planes (orient-
ed) of orbits 0, and 050°< « < 90°).

can always be selected).

Kh, . 2‘ .
.§$(4__1§) only provides
et L
36 h/s [ﬂifﬁﬁ] in the case of

the Earth, This "semi-direct
ascent'" allows reaching all the
q&*f latitudes such as:

;@—qf—%0g¢, %°+h‘—@

g

_~ Fig. 6 Semi-Direct Ascent-Case: Comment I: As in the case of

Dm0V, < K. ; % Figure 3, the optimum altitude
‘ ' of I, (above the ground) is in-

cluded between 80 and 120 km for ordinéry vehicles and the terrestrial atmo-
sphere (whence a supplementary loss of 20 to 80 m/s to be added into Cf).

Comment II: For latitudes not much greater than il’ it is not necessary
to use the '"'semi-direct ascent'". The use of a "direct ascent'" which is not } /7

completely flat (Fig. 7) allows reachlng latitudes * (1 + 611) for an 1ncrease T
~of characteristic velocity of:

(0 + 1),
U,V
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_Or some hundreds of m/s for §i = 5° in the ordinary terrestrial cases.

1.5 Losses Owing to Limita-
tions of Thrust |

These losses have been calcu--
lated in [2]. They are rather
simple in first approximation
(assuming, of course, that the
thrust trajectories are optlmally
arranged).

1. Case of the immediate and
non-horizontal thrust
(Fig. 2 and 3):

;- LV
\80,::——% ﬂj‘f? sin@o.g

- e w

- . g designating the acceleration”gfﬂgréflfy at the level of "atmospheric exit"

-and y the mean acceleration of thrust Qurlng the propelled trajectory (y being.
assumed only slightly variable). , f

Comment: This expression of‘6Cf?allows é relative error less than
. PN %

g L TP
-2 . ...whereas- V — and YD o PRI A
115 Y sin @, 10 g

In the case of Figure 4, § Cf becomes

. Wi,

i‘*jj~£Lsux@

2, Case of horizontal or non—immediate thrusts.

: The loss is much less in this case. For practical purposes if t is
~called the duration of the propelled trajectory and T that of the circular

n? z"
, revolution at the impulse altltude thé relative loss does not exceed (g T2

"~ for close impulses and gyﬁﬁ, for fargimpulses.

g 111.6 Comparison of Various Launching Bases

Since the characteristic velocity of ascent into orbit is always approxié

f’? mately equal to (Uf - V,), the compari%on of the various bases is reduced to

that of the magnitude of the velocitieé V, that can be produced for this pur-

pose for a given rocket. This time agaln the equatorial bases have the most
‘advantages. The differences, nevertheless are much less than in [3]. They
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‘Wié“(Fig. 5) it is probable that this latter one will be preferred in actual

are reduced to those caused by the planet's rotation (or 465 m/s between a
| polar base and an equatorial terrestrial base). The best "exits' are the ones
. oriented towards the East and sllghtlyulngkgned to the horizontal.

.7 The Interplanetary M|5$|ons ' |

) The table, on the follow1ng page provides, for purposes of documentation,
_the chief characteristics of conventional 'Hohmann trasfers'" (Fig. 8) from
_Earth toward planets of the solar system. (The planetary orbits are considered
© . as being circular and coplanar. The thickness of the atmospheres is disregard-
_ed and the transfer orbits are ellipses bitangential to the planetary orbits).

- _ . é Comment I: When atmospheric
braking is used upon arrival at
the target planet, Ug Earth

-E

Earth designates the character-
istic wvelocity of a journey out
__(equatorial departure) and Ug

i

Planet “Eplanet that for a retur&
trip. The sum Uf + Ugp - Ep - Ep

designates the characteristic
veloc1ty of a round trip (or that
of .a’simple departure without.
atmospherlc braking).

' Comment II: The o. angles are

sufficiently small for it to be

almost always possible to utilize

the "semi-direct ascents" (Figs.
= 3 and 6) even in the case where

"% ..Fig. 8 Hohmann Transfers transition is made to an equatori-
5 al parking orbit (i, = 0). Indeed,

is approx1mately in the plane of “the ecliptic

= N
the direction of target exit Vf

‘Ew(there is, therefore, in the case of Earth a latitude ¢f included between -24°;
"#?ﬁand #.24%). :

5

% Comment III: Being given, for the planets from Mercury to Jupiter, the
~slight difference in velocities of equatorial and tropical rotation (less than,
40 m/s) and the advantages gained through the simplicity of the 'direct ascent"

practice (with utilization of inclinations i equal or slightly grater than
'? , unless the danger presented by radlatlon belts obliges the selection of

~large values of 11)- ﬂwiw
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he Distance tou tne

Satellizi g

Plaiet's Orb:
Velocity

V. Earth

:‘U/‘ .Earth

a,; _Eart’h

"VJ«,Pl‘a;let

Hohmann Transfer:; Earth
+ planet or planet -
Earth

a. Planet

Inclination of the
Equator to. the .
Orbitine Plane

Uf Earth -E

Earth

UsPlanet -E

Duration of Honmann

Transfer (in years)

11,0 11,1 16 | 12,6 | 137 | 147 [ 134 | 156 | 158
5,1 474 | 258 15,8 22,7 6;3?
17,7 332 | 383 | 22,17
1,42

£
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slll.8 Utilization of Bases in Orbit

. The utilization of large intermediate bases in orbit around the planets
-offers a spe01flc economic advantage by allowing specialization of transporta—
* tion rockets: some for planet—base c hectlons having a specially de51gned
-aerofoil; others for interplanetary c ctions from base to base, equipped for,
~voyages of long duration and only pa551ng through the atmosphere for the sake
-of atmospheric braking during arrival in the proximity of a planet (thus allow-
~ing transition to be made practically without cost from the descent hyperbola

““ to the orbit of the base if the latter is near the atmosphere and if its plane

~is near the direction of arrival).

i

‘ Take note that, from the viewpoini of characteristic velocity, the rocket
‘performing the short planet-base journey will require, by far, the greatest

- expenditure (hence the great advantage of research involving recoverable stages,

“hypersonic glider, etc...). On the other hand, departlng from a non-secant
orbit with the attractlng planet, the rockets carrying out the interplanetary
part of the voyage will be able to convenlently use the low-thrust motors

(nuclear—electrlc etc...) if the Jatter. are found to be more economical.

,u.“
05K } e )
.. net . 5
LK P12 Ise B3 .
PR oo 'th 2y - 3
. oo e, )
‘‘‘‘‘ e,\leﬂ - *Lp
se o¢ lanet Fre o _E_
-r ba . Iah
qpac® ~ d
. 0 e ;,6 n
5C®
05 jirect® !
™ \\Se“\‘
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o 5088
B2%
K-L
—Q5K"

Fig. 9 Losses owing to Utilization of an Intermediate Space Base with Clrcular
Orbit Whose Radius is r.
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.account the atmosphere; for the Earth an orbit at approximately 600 km of
.altitude, enduring a service lifecorit:
_ciently below the radiation belts, seem

.orbit (dlsregardlng the thickness of th
.istic velocity owing to the establlshment of this base on a far orbit.

flight paths both providing the same loss, are assumed to utilize atmospheric
~-brakings. This allows, furthermore, the convenient carrying-out of important
~changes of orbiting plane at no cost, even for low aerodynamic lift-drag ratios.

The optimum p051t10n of base orblt is as low as possible taking into

of 50 years and 1ocated suffi-
suitable. ‘

2 function of radius r of the base

Theré has been plotted on-Figure i
atmosphere), those losses of character

]

Comment I: The descending fllght paths (space -+ base and base-planet),

Comment II: The base + space fllght path shows not a loss but a gain,

It is, nevertheless, insufficient to compensate for the other losses (except

~ for when r quite large, a case with few advantages owing to delays

" it requires).

Comment III: The planet + base and base - planet flight paths have beené
optimized in the manner shown in [2].

Comment IV: The case of a base - space ascent\of the "direct ascent"

étype (Figs:-5 and~7) and not the "“semi-direct ascent"(Flg - 6) was not-shown
“because it is a function of the value and the dlrectlon of V. and is never more

£

favorable than the "semi-direct ascent"(from the viewpoint of characteristic

2 fportant physical advantages: suitable protection, in subterranean shelters,
“agains meteorites and radiations, location on the spot of some raw materials,

“© yelocity). ?

1.9 Utilization of Intermediate Basés on Natural Satellites %

The utilization of intermediate bases on natural satellites offers im-

“etc... These advantages should be compared to the losses which can be read on

“Figure 9 for plainly r is required in this case.

There is thus found a loss of apﬁroximately 1 km/sec for satellites of

. Mars, in the Mars-Space direction as well as in the Space-Mars direction (in
“addition, since these satellites are close to the plane of the Martian equator,
“therefore at approximately 25° from the plane of the Mars orbit, maneuvers of
the "semi-direct ascent'" type are requ1red in the Mars-Space dlrectlon)

As far as our heavy satellite the Moon is concerned, the loss is much

~higher. It is close to 5 km/sec in a direction as in the other (the lunar
‘escape velocity is 2.4 km/sec). Thus, it is probable that lunar intermediate
_bases will only be utilized whenever the Moon forms the subject of a con-

" ‘siderable colonization.
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CONCLUS [ON

‘The study of the optimizétieninf~the ‘extra-atmospheric phase of the:

»§~ascent into orbit when the target orbit is hyperbolic (departure for an inter-|
1i§~p1anetary m1551on) is a relatlvely 51mp1ehpreb1em leading to solut10n§ includ-

§ 1ng at the most four propelled ‘phases!

The “dlreet exit" with two propelled phases and a low intermediate park-

.-ing orbit generally forms the most practical economic solution,

The cost of ascents into orbit is almost independent of the orientation.

The utilization of intermediate space bases in orbit around planets is
~very advantageous, especially if these bases are close. On the other hand,
' .~the utilization of bases on natural satellltes leads to considerable losses
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